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An Alternative Transformation for the Elastic and Piezoelectric
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The transformations of the elastic and piezoelectric constants are considered. A new form for these
transformations has been derived introducing general Christoffel moduli I'{" (¢ =1. . . 6) for the trans-
formation of the elastic stiffnesses and general piezoelectric moduli E{ (=1, 2, 3) for the trans-
formation of the piezoelectric stress constants, in all cases p=1...6.

Introduction

The transformation equations for the elastic and piezo-
electric constants of anisotropic media referring to a
rotated Cartesian coordinate system are well known,
being first derived by Voigt (1910). They can also be
found in other text books, e.g. Wooster (1938) and
Cady (1946). Recently Hearmon (1957) tabulated the
equation for the transformation of the elastic and
piezoelectric constants of anisotropic media. Various
methods of deriving these transformation equations
have been used, the most convenient being that of
tensor transformation, as the scheme of the elastic
stiffnesses form a tensor of the fourth order and that
of the piezoelectric stress constants a tensor of the
third order in the direction cosines. A very convenient
form of equations for transforming the elastic and
piezoelectric constants based on tensor application
was given by Bechmann in the book ‘Piezoelectricity’
(1957).

An alternative form of transformation of the elastic
and piezoelectric constants has been derived based on
the Christoffel elastic moduli and the corresponding
piezoelectric moduli. Using the conventional definition
of the Christoffel moduli (Christoffel, 1877) which are
dependent on the second order of the direction cosines,
the transformation for six elastic stiffnesses, e.g.,
Ci1, Ces» Cs5, Ces» Cs1, €16 Telated to the X’-axis can
be obtained as shown by Bechmann (1941). These

the Christoffel moduli, all twenty-one elastic stiffnesses
can be defined. Considering, in particular, the propaga-
tion of plane waves or of the three thickness modes of
infinitely extended plates, this form of transformation
is advantageous.

1. Conventional method for transformation of the
elastic and piezoelectric constants

The transformed constants are denoted by primes.
The twenty-one elastic stiffnesses (elastic moduli) c,,
can be written in general
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where the constants Ap,, related to the direction
cosines axmn(m, n=1, 2, 3) are shown in Table 1. For
p=qg=1,2,...,6, expressions (1) are simplified to
6 6
Cyl)p =2 .2 CrsAprAps . (2)
r=1s=1
Similar expressions hold for the elastic compliances
(elastic stiffnesses) s,,. These expressions differ from
those for ¢,, by the numerical factors 2 or 4 only.
The elastic compliances s,, are
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six Christoffel moduli define the propagation of the OpeSpa e =
three plane waves in an infinitely extended elastic (p,g=1,2,...,6), (3)
medium. By introducing a more general definition of where
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1 for p, g or r, sequal to 1, 2 or 3
__Jiforp,qorr, sequalto4,5o0r 6
Opa» Ors= 1 1 for p or r equal to 1, 2 or 3 and ¢ or s
equal to 4, 5 or 6 (or vice versa).

The transformation equations for the piezoelectric
stress constants (piezoelectric moduli) e, can be
written as

3 6
e =2 ZemomAey (1=1,2,3; ¢=1,2,...,6). (4)
m=1r=1

This transformation also holds for the piezoelectric
stress constants %;,. The transformations for the p1ez0~
electric strain constants (piezoelectric coefficients) dy,
have a form similar to equation (4) and can be ex-
pressed

qudlq 2 zo'mrdmrl)élmAm-
m=1r=1
(1=1,2,3; ¢=1,2,...,6), (5)

where
Cu G = 1forl, qorm,requaltol,2or3
' 9mr = 1 for ¢ or r equal to 4, 5 or 6.

The piezoelectric strain constants g, transform ac-
cordingly. Equations (4) and (5) simplify when written
in full for the case I=¢=1, 2 or 3.

2. An alternative transformation for the elastic
and piezoelectric constants

All twenty-one elastic stiffnesses ¢,, can be obtained
using more generally defined Christoffel moduli. The
Christoffel moduli are conventionally defined by I
(¢, k=1, 2,3). We introduce I ({=1,2,...,6) and
add the superseript (p) indicating the group of Ay
(p=1,2, ...,6) as shown in Table 1 in order to form
the expressions for the Christoffel moduli. The Chri-
stoffel moduli used here are written in the form I'{P.
For p=1, 2 or 3, the Christoffel moduli are identical

Table 2. The elastic moduli I'P
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Table 3. Transformation for the elastic stiffnesses c,,
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Table 4. The piezoelectric moduli EP

Apy  Apy  Apy A Ag, A AL AL ., A
pr Aps  Aps Ap, Aps Ds
—— Ap;  Apy  Apy Ay Ay Ags Az A, A,
r [ degs ] [ degy ] teys W
EPT EP) B! e €26 €35 €5 + €36 €31 + 15 €16 + €1
\~ $e56 L dey5 | ey, |
[ €94 ] [ 3ess ] [ dey,
EPT EP E(zp)l €16 €22 €34 €24 + €32 €36 + €14 €12 + €25
L degs | L 1ey, | L $eqq |
[ deqs ] [ degs ] ey, ]
E:(;p)n E:(;p) EPNT €15 €24 €33 €23 €34 €35 + €13 €14 + €5
\_ $eg, | L 2€)3 L 1,5 |
Table 5. T'ransformation for the piezoelectric stress contsants e,'q
E(ll) E(zl) ng)
E® E® Egz)
Egs) E(Za) Egs)
E(14)I EOI Eg“)l Eg:)II E(4)I Eg4)n
r . E(‘s)I E(15)H Egs)I E(25)LI Egs)r Egs)n
1__ E®1 E(lc)II E(z“)I E@I Egs)r E,(,G)H
611 1 | X1 X129 %3
e;z Koy a2 Koz
es’a ‘ &3y O3g X33
e:;s ei;l e;: %11 X1 &3
e:;z e:;s 6;6 g1 Kog a3
6;4 e;’xs e;5 X31 K3z X33
eé5 5;5 e;s ®13 X1 X3
eéa 914 6;2 Koy Xog g
&5 e o %31 %32 %33

with the usual definition. For the following applica-
tions, it becomes necessary to split the expressions
Apq (p, =4, 5, 6) in Table 1 into two simple products
which are denoted as 47, AT respectively. The rule
of forming the I'® as 1ndlcated in the left-hand
column of Table 2 is defined by the subsequent rule
of formation: multiply each elastic modulus ¢, as
given in the row corresponding to the I'{P of this table,
by the corresponding value Ap, Ape, ... as given
at the top of this table, and then add these products.
For example, in Table 2, when p=4

I’§4)“~ 51441+ cas Aaz+cas Aaz

+cas Ags+ Ca ALy + cy AT + 5545
+cse Afs+ca Al -

The elastic moduli c,, as given in the six left-hand
columns of Table 3 are obtained by multiplication of
the corresponding A4, of each row by the I'® as
given at the top of the table, and then adding these
products together. As an example

063—_2:144;[‘(5)4‘ 2 (AI

=4

IO+ ALTPT).  (6)

It can be seen that c44, Cs5, Cos appear three tlmes in
this table c45, 6467 Cse appear four times; and cy,, ¢y5,
C16s Caas C25, Co6s Cags Ca5 aNd Czq appear twice in this
table. This means that these constants can be alter-
natively expressed. Tables 2 and 3 are self-explanatory.
It may be mentioned that the arrangement of the
¢rs in Table 2 agrees with the arrangement of the c.,
in Table 3.

Similarly, the complete set of 18 piezoelectric stress
constants e, (I=1,2,3; g=1, ...,6) can be written
in terms of generalized piezoelectric moduli E®
t=1,2,3;p=1, , 6). These generalized piezo-
electric moduli, as indicated in the left-hand column of
Table 4, are defined by the rule of formation similar
to that of Table 2, but the piezoelectric stress constants
elg are used in place of the elastic stiffnesses cp,.
For example, in Table 4 when p=4

EP'= ejqdy+endip+esdggt+esy Al +es AL
+egdis+ern A+ e Afs+ess AL .

The piezoelectric stress constants e;, as given in the
six left-hand columns of Table 5 are obtained by
multiplication of the corresponding direction cosines
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omn (my,m=1,2,3) of the corresponding row of the
piezoelectric moduli by the E{ given at the top of the
table and then adding these products together. As an
example

3
3:;4 =23 E§4)10‘3i .

i=1

The piezoelectric stress constants ey, es5, €35 appear
twice in this table.

A similar form of transformation can be applied to
the elastic compliances s, and the piezoelectric strain
constants d;,. In Tables 2 and 3, the following sub-
stitutions should be made in order to define the
elastic compliances:

In place of Substitute
re t=1,2,...,6 z®
Cé’fl or ¢y p,qg=1,2,3 ' szll)q or 8y,
Cpg O Cpy p=1,2,3 | or vice ésm or ism
q=4,5,6 | versa
c;q or ¢y, p,g=4,5,6 :}s;q or :}sm

Correspondingly, Tables 4 and 5 hold for the piezo-
electric strain constants when the following substitu-
tions are made:
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In place of Substitute
/Egm p=1,2,...,86 45@
ejq OF € g=1,2,3 dlq or dlq
erq OF € 7=4,5,6 id;, or 3dy,

The piezoelectric strain constants g;, transform
accordingly.

For application to elastic and piezoelectric problems,
particularly to thickness vibrations of plates, this
transformation is of practical value.
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The Electron Density Distribution in Ammonium Bifluoride
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An account is given of a three-dimensional X-ray analysis of NH,HF, based upon Geiger-counter
measurements of intensity. The electron density has been measured with a s.d. varying from 0-06
e.A-3% in general positions to 0-11 e.A—3 in special positions. It is found that the electron-density
distribution in the H atoms of the NH} ion corresponds closely to that in an isolated atom with a
temperature factor of exp (—2-4 sin? 6/A2). The electron density in the H atoms of the (FHF)~ ions
is subject to a rather larger random error, and the results are less clear cut. These atoms have a low
peak density (0-47 and 0-52 e.A-3) but the electron count (average) over a sphere of radius 1-1 A
is normal. There is thus no evidence for a transfer of charge from H to F. The averaged electron
density in these two atoms has spherical symmetry, within rather wide limits of error. The F atoms
have strongly anisotropic vibrations, and their electron distributions appear to be more diffuse
than that in an isolated atom. Attempts to determine the state of ionisation of the N and F atoms
were not conclusive. The two independent F-H-F bond distances are 2-275 and 2-269 A (s.d.0-005 A),
and the N-H distances are both 0-88 A (s.d. 0-03 A) which is significantly less than the inter-nuclear
distance of 1:025 A.

Introduction

The fine structure of the bifluoride ion has aroused
considerable interest in recent years and has been the
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tory, Courtaulds Ltd., Coventry, England.
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subject of several experimental investigations. Peter-
son & Levy (1952) give a convenient summary of work
done before 1952. It now appears to be established
beyond reasonable doubt that the proton is located
centrally between the fluorine atoms, and that the
original postulate of a double potential well (Ketelaar,



